Friday, 12 August 2016

TRIGONOMETRY PROBLEM WITH SOLUTION

1.Prove the indentity  tan2(x) - sin2(x) = tan2(x) sin2(x)
  1. Use the identity tan(x) = sin(x) / cos(x) in the left hand side of the given identity. 

    tan2(x) - sin2(x) = sin2(x) / cos2(x) - sin2(x) 

    = [ sin2(x) - cos2(x) sin2(x) ] / cos2(x) 

    = sin2(x) [ 1 - cos2(x) ] / cos2(x) 

    = sin2(x) sin2(x) / cos2(x) 

    = sin2(x) tan2(x) which is equal to the right hand side of the given identity.
2.Prove the indentity 

(1 + cos(x) + cos(2x)) / (sin(x) + sin(2x)) = cot(x)

No comments:

Post a Comment